10 2004 年 2 月 29 日から 3 月 1 日にかけて、 久米島付近で急速に衰弱した 2 つの線状降水域の構造解析

城間恒彦、永山武彦(久米島空港出張所)、林俊宏、許田盛也、栽吉信(沖縄気象台)

1 はじめに

前線や前線の前面で発生した線状降水帯が沖縄 地方へ接近中に急速に衰弱する場合がよくある。 しかし、その構造等については、「カタ型の前線」 または「暖域場の不安定」等、様々な議論があり、 衰弱の原因もよく分かっていない。

2004年2月29日~3月1日にかけて、久米島の 西海上に異なった特徴を持つ2つの線状降水帯が 現れた。いずれも前線の前面で発生した降水帯で あるが、前者はゆっくりと東進し、後者は60km/h 前後の速い速度で東進しながら共に急速に減衰し た(以後、前者をパターン、後者をパターン と区別する)。

この2つの降水帯の発生・発達・衰弱過程につ いて、環境場の特徴の把握と降水帯の構造解析を 目的に実況監視資料と気象庁非静力学モデル JMANHMを用いた調査を実施したので報告する。

なお、本調査は管内 NHM 共同調査の一環として 行った。

2 2つの降水帯の特徴と環境場の特徴

(1)2つの降水帯の特徴

パターン は 29 日 09 時頃、東シナ海中部で発 生し、発達しながらゆっくりと東に進んだが、29 日 15 時頃から次第に弱まり、29 日 21 時頃には久 米島の西海上で衰弱した(第1図)。

パターン は1日00時頃、東シナ海中部から華 南にのびる前線の前面で発生し、発達しながら 60km/h前後の速い速度で東進したが、1日06時過 ぎから次第に弱まりだし、09時頃に沖縄本島を通 過した(第2図)。

(2)総観場の特徴

2月29日09時の地上天気図(図省略)では、 東シナ海中部から華南にかけて停滞前線があり、 同時刻の850hPa面では、沖縄本島の西海上は、西 よりの湿った気流(湿舌)とサブHを回り込む南 西流の合流場となっている(第3図)。また、同時 刻の500hPa面を見ると(第4図)、トラフが九州 付近を通過中であり、また、大陸東岸からはリッ ジが接近している。このリッジは29日21時頃に は沖縄本島を通過した。

(3)気象衛星画像からみた特徴

パターン の発生・発達時には、水蒸気画像の バウンダリーの特徴から、トラフの通過、衰弱時 にはリッジの接近が見られた(図省略)。

パターンの発生時の画像を第5図に示すが、 1日03時の赤外画像から、前線の活発化を示すフ ックセンスを持った雲域が見られ、ウォームコン ベヤーベルトとコールドコンベヤーベルトも解析 できる。また、同時刻の水蒸気画像から、ウォー ムコンベヤーベルトに西から進入してくる暗域が 見られ、その先端付近で対流雲列が発生した。こ の対流雲列はパターンの降水帯に対応しており、 発達しながら東進した。また、赤外画像より、対 流雲列の後面では雲域の消散傾向が確認された。

(4)パターン、の環境場のまとめ

パターン は、大陸西岸から流入する西よりの 気流とサブHを回り込む南西流の合流場で発生・ 発達し、そのトリガーとなったのは、上空を通過 したトラフである。また、その衰弱はリッジの通 過に伴うものと推定する。

パターン は、ウォームコンベヤーベルトに進入してきた乾燥空気(暗域)の先端付近で発生し、 速い速度で移動していることから、カタ型前線か らスコールライン化したものと考える。

3 気象変化からみた降水帯の特徴

パターン は弱まりながら久米島、沖縄本島を 通過した。通過前後の気象経過図及び独立行政法 人情報通信研究機構沖縄亜熱帯計測技術センター のウィンドプロファイラー(以下 NICT沖縄 WPR) から得られた特徴を述べる。

(1)気象経過図の特徴

第6図に名護の現地気圧と気温・露点の経過図 を示すが、パターンの通過前の1日04時頃には、 気圧の低下が見られたが、その他の気象要素には 変化はなかった。また、通過中の1日08時~09 時にかけて気圧の上昇、気温・露点の急低下、風 向の急変が見られたが、風速の強化は顕著ではな かった。また、通過後6時間程度経過してから、 緩やかではあるが、再び気圧の低下域が現れた。

(2) NICT 沖縄 WPR の特徴

NICT沖縄WPRは名護特別地域気象観測所の北東 に位置し距離的にも近いことから(図省略)第6 図で見られた気圧低下域と上昇域及び緩やかな気 圧低下域の現れた時間帯に、NICT沖縄WPR 観測資 料(第7図)で見られる特徴をまとめた。

気圧低下域に対応して3km以下の下層で20kt 程度の西南西風及び1m/s~2m/s程度の上昇流 域が確認された。また、気圧上昇域には3km以 下の下層で強い降水に伴う下降流と50ktの西 風、緩やかな気圧低下域には2km以下の下層 で弱い気塊の下降流(図省略)が確認された。

パターン はスコールラインの特徴をよく示 しており、Houze 他(1989)のスコールライン の模式図(図省略)で、気圧低下域は模式図の メソ低気圧、気圧上昇域はメソ高気圧、緩やか な気圧低下域はウェーク・ロウに対応する。 第7図から、降水域の先端(進行方向)と後 面では風速差が30kt(約60km/h)ある。これは、 パターンの東進速度にほぼ一致する。

と水蒸気画像(下)

第7図 NICT沖縄WPR 第6図の気圧低下域、上昇域を記入。

JMANHM による再現結果の解析 JMANHM の設定条件は次のとおりである。 【初期値/境界値/格子間隔】

パターン は、29日 00Z/28日 12Z/5km パターン は、29日 12Z/29日 00Z/5km

- 【対流パラメタリゼーション/雲物理過程】 なし / 氷相過程含む
- (1)再現結果の考察

第8図にパターンの再現結果を示す。降水強度の再現は悪いが、パターンの発生・発達・衰弱過程は良く再現できていた。

第9図にパターンの再現結果を示す。全体的に3時間程度の時間ズレはあるが、パターンの 発生・発達・衰弱過程及び東進速度については、 概ね良く再現されていた。

第 10 図にパターン の発達期(29 日 12 時)と 衰弱期(29 日 15 時)の相当温位の鉛直分布を示 す。パターン は下層 900hPa 以下で西よりの気流 (e325K)と南西の気流(e328K)で発生し、 発達期には上層発散・下層収束が顕著であり、反 対に衰弱期(図略)にはそれほど顕著ではなかった。

第 11 図にパターン の発達期(1日06時)と 衰弱期(1日12時)の相当温位の鉛直分布を示す。 パターン は前線に対応する雲域の前面で発生し ており、中層から下層に流入する約315Kの低相当 温位(乾燥)の先端で発達していた。また、NICT 沖縄WPRで見られた強い降水域の下での50kt程度 の西風も再現されている。また、第9図の発達期 の地上気圧分布から、対流性降水の強い部分に対 応して、その前面でメソ低、直下でメソ高が再現 されていたが、ウェーク・ロウは明瞭ではなかっ た。 衰弱期(図略)には、中層からの乾燥空気の移 流が更に強まり、3km以下の層で約315K程度の低 相当温位の拡大が確認された。

- 5 まとめと考察
- (1)環境場について

パターン は、大陸南岸の西よりの気流とサブ Hを回り込む南西流との合流場で発生した。また、 その発生・発達及び衰弱のトリガーとなったのは、 上空を通過するトラフとリッジである。

パターン の発生・発達は、中層から流入した 乾燥空気の先端付近で発生した。また、その発達 は乾燥空気の移流による対流不安定の強化による ものだが、その衰弱についても乾燥空気の移流に よる対流抑制が関与していると考える。

(2) 2つの降水帯の特徴について

パターン が発生した環境場は、茂木他(2004) の水蒸気前線と良く似た特徴を持っていた。

パターン はカタ型の降水帯であり、東進する につれて、次第にスコールラインの特徴を備えて いったと推定する。

(3) JMANHM の再現について

降水粒子の蒸発効果を除く感度実験を行った結 果、降水強度の弱まりが見られたが、東進速度や 降水帯の形態に変化は見られなかった。このこと は、沖縄付近はもともと下層が湿っており、一般 的なスコールラインで見られる下層での冷気プー ルの形成やガストフロント通過時の風速の強化も 顕著ではないと考える。従って、中層から流入し た乾燥空気がガストフロントの東進速度を追い越 してしまい、その結果、中層が広く乾燥空気に覆 われ対流が抑制され降水が弱まったと推定される。

